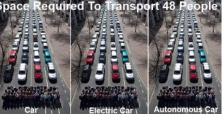
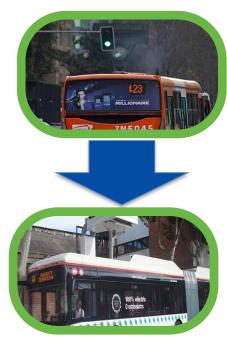
PUBLIC TRANSPORT GOVERNANCE, INTEGRATION, AND PARATRANSIT. CAPACITY BUILDING: LESSONS FROM AFRICA AND LATIN AMERICA

Strategies to accelerate electric mobility

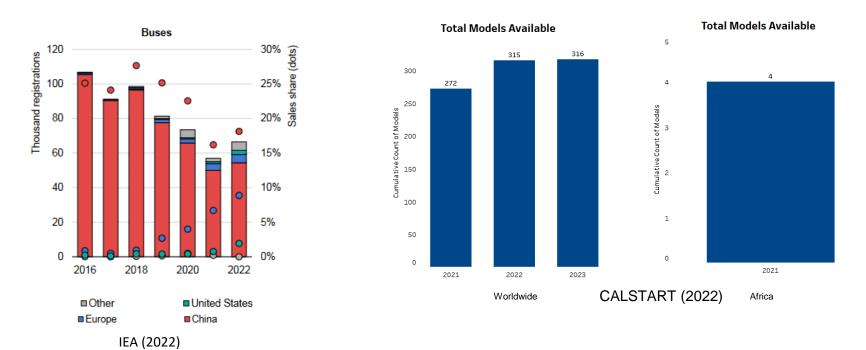
Dr. Miquel Àngel Estrada Romeu Associate professor Universitat Politècnica de Catalunya, Barcelona TECH

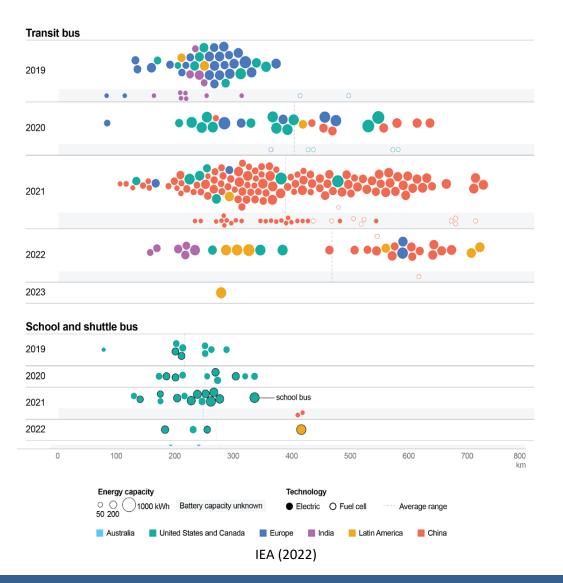


Content

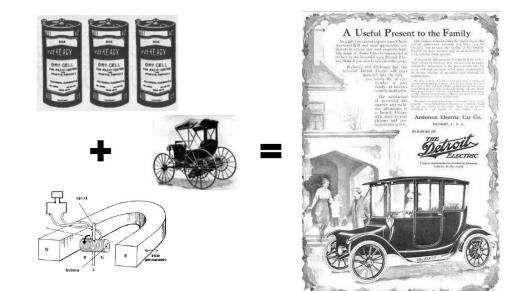

- Introduction to Battery Electric Buses (BEB) and Zero Emission Buses (ZEB)
- 2. Market penetration and geographical imbalance
- 3. Performance and Cost
- 4. Barriers and Opportunities for ZEB
- 5. Flagship projects. ZeEUS and eBRT-2030

- Urban mobility growth. Individual vs Mass transit
- Buses. High level of service. Accessibility
- Bus systems are still a major source of local emissions and GHG that worsen the air quality, and contribute to the global warming.
- Transition to Battery Electric Buses (BEB) and Zero Emission Buses (ZEB) to decarbonize current bus systems
- Wide spectrum of electric technologies on the market.
- Recommendations to BEB/ZEB tenders, deployment, maintenance.



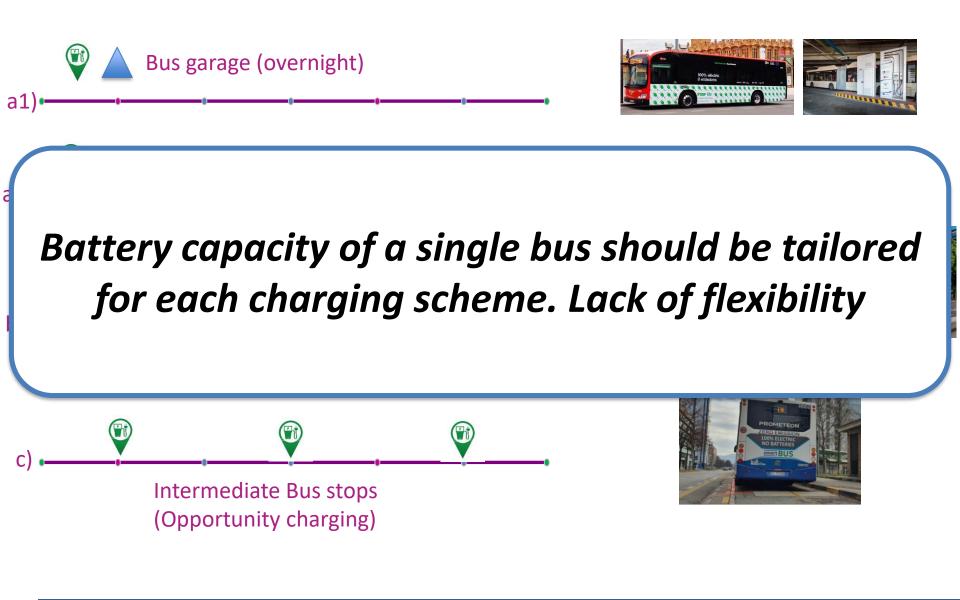

2. BEB market

- Global stock of 10.4 million buses and coaches. Only 2% of the bus fleet was full electric in 2018.
- In 2022, nearly 66 000 electric buses were sold worldwide, representing about 4.5% of all bus sales.
- A total of 27 governments have pledged to achieve 100% ZEV bus and truck sales by 2040 and both the United States and European Union have also proposed stronger emissions standards for heavy-duty vehicles


2. BEB market around the world

2. BEB. Technology and performance

Conceptualization of battery electric vehicle



Is the electric service so simple?

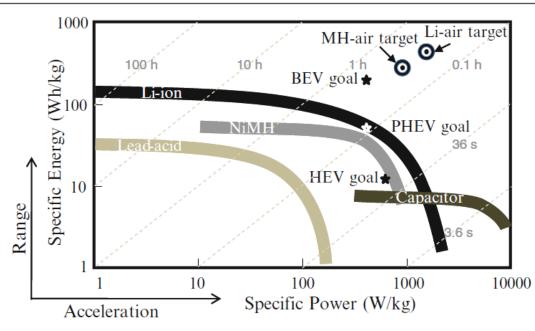
"Charging facilities and operational schemes are the cornerstone of the electric bus systems"

3. BEB. Charging schemes

3.EV Charging infrastructure

	Energy source							
	GASOLINE/DIESEL	HYDROGEN	BATTERY					
			1 Co	15				
	Fueling gasoline or diesel at a petrol station	Fueling hydrogen at a hydrogen refueling station	"Wired" charging using a plug	Battery swapping	Induction charging			
Description	Conventional gasoline or diesel refueling	Hydrogen refueling (similar to natural gas refueling)	Plugging in to a charging station using a cable and plug	for a fully charged	/Battery in the car is charged by wireless induction charging			
Time needed ¹	5 min	5 min	4-8 hrs (slow) 20-30 min (fast)	5 min	~2-8 hrs ²			
Suitable for which power- trains	 ICE HEV PHEV REEV (gasoline) 	FCEV REEV (hydrogen)	 PHEV BEV suitable for plug-in charging 	 Special BEVs suitable for battery swapping 	 Special BEVs suitable for induction charging 			
Example car	All ICEs	 Hyundai ix35 (FCEV) 	 Renault Zoe (BEV) 	 Special model of Renault Fluence 				
Current availability in Europe	Widely available: ~131,000 stations	Very limited: ~80 stations	Limited availability: >20,000 (slow) >1,000 (fast)	Very limited ~50 stations	Not available (few pilots in progress)			

1 Time need for full refueing or recharge. For fast-charging of battery, time to reach 80% of battery capacity is commonly used


2 Since induction charging is still in plot stage, common duration and power level are not yet established; power levels of 22 kW have been achieved

SOURCE: Europia, Fuel Cell Today, Public sources, McKinsey

3. BEB. Chemistries

Battery type	Nominal voltage (V)	Energy density (Wh/ kg)	Volumetric energy density (Wh/L)	Specific power (W/kg)	Life cycle	Self discharge (% per month)	Memory effect	Operating temperature (°C)	Production cost (S/kWh)
Lead acid (Pb-acid Nickel-cadmium (Ni-Cd)	i) 2.0 1.2	35 50-80	100 300	180 200	1000 2000	< 5 10	No Yes	-15 to +50 -20 to +50	60 250-300
Nickel-metal hydride (Ni-MH	1,2	70–95	180-220	200-300	< 3000	20	Rarely	-20 to +60	200-250
ZEBRA	2,6	90-120	160	155	> 1200	< 5	No	+245 to +350	230-345
Lithium-ion (Li-io	n) 3.6	118-250	200-400	200-430	2000	< 5	No	-20 to +60	150
Lithium-ion polymer (LiPo)	3.7	130-225	200-250	260-450	> 1200	< 5	No	-20 to +60	150
Lithium-iron phosphate (LiFePO4)	3.2	120	220	2000-4500	> 2000	< 5	No	-45 to +70	350
Zinc-air (Zn-air)	1.65	460	1400	80-140	200	< 5	No	-10 to +55	90-120
Lithium-sulfur (Li	-S) 2.5	350-650	350	-	300	8-15	No	-60 to +60	100-150
Lithium-air (Li-air) 2.9	1300-2000	1520-2000	-	100	< 5	No	-10 to +70	-

3. BEB. Impact of charging schemes on cost

	Capacity, C (kWh)	Consumption, fc (kWh/km)	Scheme	Acq. Cost (kEuro/veh)
Bus 12m	100-350	0,9-1,3	Night	e:500 h:350 d: 250
Bus 18m	100-150	1,5-2,0	Opport.	e:670 h:460 d: 350
Bus 18m	550	(prototype)	Night	

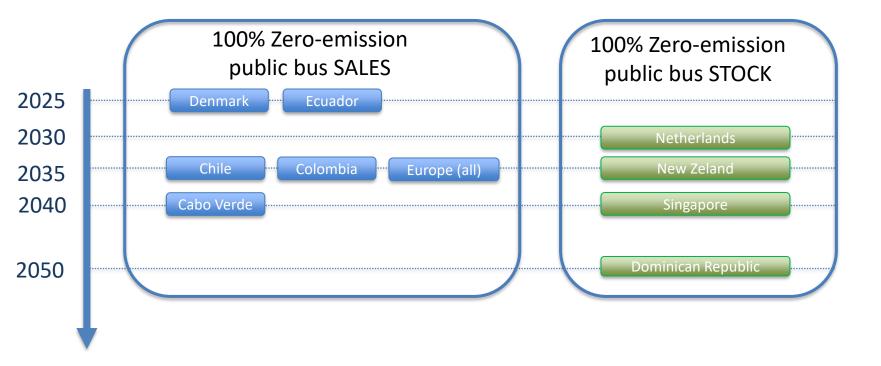
Note: e:electric h:hybrid d: diesel

- Opportunity charging /Terminal Charging
 - One charging station at terminal (1-0;0-1)
 - Two charging stations at terminals (1-1; 2-0)
 - Multiple charging stations at terminals (2-2)
 Operating stations

 $C > L \cdot f_c$

Where: C: Battery capacity (kWh)

L: Distance run from the previous charging operation (km fc: Vehicle energy consumption per km (kWh/km)



The operational costs incurred by PTOs when deploying BEB are 10% higher than hybrid counterparts.

- Rolling stock needed is equal or bigger than ICE powertrains
- Purchasing cost is higher (madurity)

3. BEB. Policy goals and government incentives

Panama, 40% of the stock of selected public vehicles are to be EVs by 2030. Ghana's recently released strategy contains a target that 4%, 16%, and 32% of new sales are to be EVs in 2025, 2030, and 2050, respectively. In addition, countries recently proposing tax-related policies include Angola, Brazil, Ecuador, Pakistan, Trinidad and Tobago, Tunisia, Uzbekistan, and Vietnam.

4. Barriers for Zero Emission V. in Africa and America

Current situation:

- Deficient air quality, low quality fuels, small penetration of Low emission powertrains.
- High ridership of transit services

Governance:

- Lack of Transit Agency or Public Body
- Multiple bus operators, atomized ecosystem
- Depot, Vehicle and battery ownership, ancient fleet

Economics:

- Service subsidies instead of Fuel subsidies (Ecuador)
- Price of electricity
- Incentives

Technology:

- 4 eBus providers
- Energy consumption in warm countries (30% auxiliary consumption)

Infrastructrure:

- Electric grid is not prepared
- Redundant transit system
- Renewable energy
- Safety issues

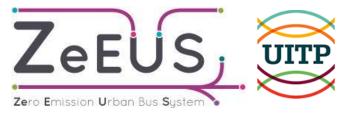
4. Opportunities for Zero Emission Vehicles

- Big cities. Involvement of municipality, regional and national governments to deploy the required charging infrastructure (private / public)
- Conceptualization and development of electric models for midi/mini buses
- Renewable energy generation, hydrogen plants and fuel-cell vehicles

Enel_X Santiago de Chile

Transmilenio Bogotá

Opibus


- Innovations driven by American and African countries:
 - Uberization (Quito, 2010): 8,810 licensed taxis (low Q)+4,759 executive taxis (high Q)
 - Shared taxis in routes (Santiago, 2004). Similar to current on-demand bus services
 - Buses of high level of service (Bogotá, Santiago). Right of way, ticketing out of vehicles, etc.

5. Flagship projects (UITP): ZeEUS

Co-funded by the

European Union

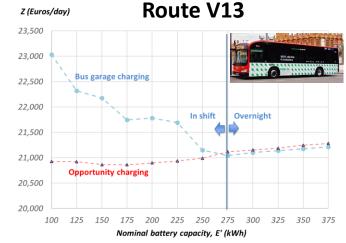
OPTIMOB: technology-agnostic Α Decision Support Tool for assisting cities and bus agencies in the deployment of the most suitable electric bus fleet technology

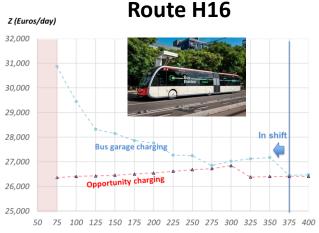
ălma

ZONE CLUSTER NONPROFIT LTD

6 FGC

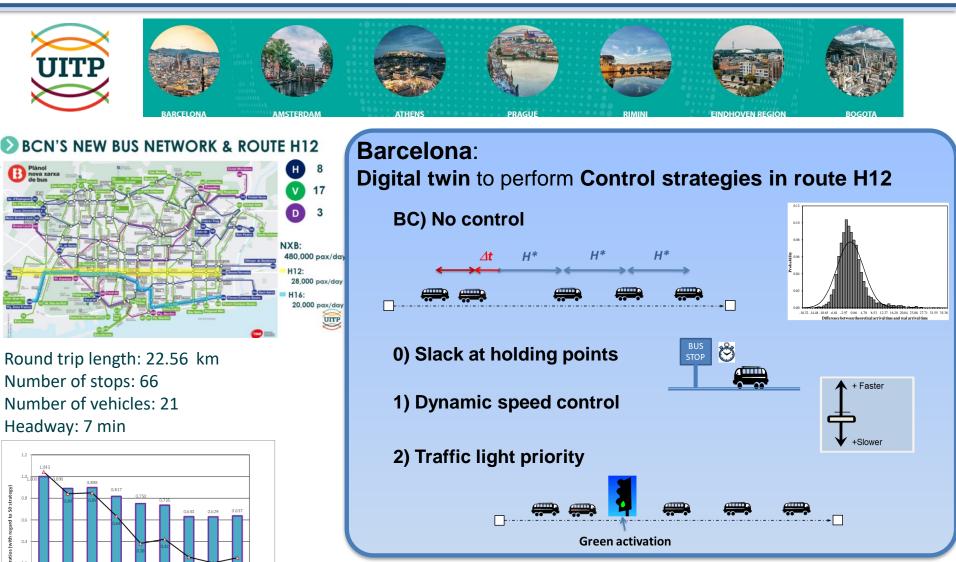
DIADA


тмв


POLITECNICO **CARNET**

AMB

W HUMDA



Nominal battery capacity, E' (kWh)

5. Flagship projects (UITP): eBRT-2030

S0. Slacks S1. Dynamic cruising speed

phi=3 min phi=6 min phi=1 min phi=3 min phi=6 min phi=1 min phi=3 min phi=6 min = 22 veh = 23 veh = 23 veh = 22 veh = 23 veh = 2

UPC

S2

S2. S0+S1+ traffic light priority

eBRT²⁰

Conclusions

- The majority of BEB routes with low-medium demand will rely on off-shift (overnight).
- e-Articulated buses with overnight charging schemes are still under development.
 Opportunity charging schemes in crowded and busy routes.
- Ultracapacitors offer a promising solution but we they need on-street facilities.
- Lower emissions at the expenses of lowering flexibility and increasing operational cost
- Bus Garages to service growing demand for heavy-duty electrification will need to be developed, and in many cases may require distribution and transmission grid upgrades (4-8 years....start now).
- Alternative solutions integrate local renewable capacity, combined with smart charging, which can help reduce both infrastructure costs
- Innovation in mini/midi/standard buses for on-demand transport

