Rural Transport Training Materials

Module 1:

Policies and Strategies

Case study: An affordable safety barrier for Nepal

Session 1.4 Part 2

Presentation 1.4b

1. Introduction

Learning Objectives

This session enables participants to:

- Explore the rationale for using the gabion safety barrier in Nepal
- Explain the circumstances in which the gabion safety barrier is best used
- Analyse experiences from Nepal
- Draw lessons from the Nepal experience for other countries

Session Structure

Context of road safety in Nepal
 Requirements for safety barriers in Nepal
 The gabion safety barrier
 Guidelines for the use of the gabion safety barrier

2. Context of road safety in Nepal

Long term road safety programmes

- build skills, address habits & attitudes needed to ensure road safety
- Shorter term road safety programmes
 - quickest & easiest to use road safety engineering to reduce fatalities and injuries
 - making roads safer through better design & traffic management
- The Traffic Engineering and Safety Unit of the Department of Roads in Nepal
 - tested a safety barrier at hazardous road locations on busy roads

The nature of run-off-road accidents in Nepal

Trucks & buses make up the majority of vehicles on Nepal's main inter-urban roads.
 These vehicles are:

 generally worked hard

poorly maintained

The nature of run-off-road accidents in Nepal

The towns are far apart

- Iong driving hours
- fast speeds given the limitations of the vehicle & road environment
- driver loses control of his vehicle (often after swerving to avoid a person, animal or fallen rock) and goes off the road
- sometimes the vehicle will plunge down a mountainside

 \succ resulting in a high death toll for crowded buses

Safety barriers already tried

- 1. Low blocks of cement masonry marking the road edge at steep drops
 - road engineers call them 'confidence blocks'
 - but! they shear easily on impact
- 2. Reinforced concrete wall
 - too costly for general use
 - too ridged to allow for 'give' during the impact of a vehicle

Problems with other conventional barriers

Steel beam safety fence

- used in Britain for example is not always appropriate
- typical run-off-road accident is different in Nepal
- a double-beam fence to contain loaded trucks on bends would be required in Nepal
- high cost
- specialists skill & equipment required for design & installation
- maintenance keeping sufficient stock of fence components may be a problem

3. Requirements for safety barriers in Nepal

Capable of containing a 16 tonne truck

- travelling at 40kph
- impacting at an angle of 30°
- Affordable
- Solution Able to 'give' on impact to reduce the risk of injury to the vehicle occupants

Requirements for safety barriers in Nepal

 Easy and cheap to repair
 Simple to design and install
 Suitable for installation on sharp bends

4. Gabion Safety Barrier

What is the gabion safety barrier?

 1 metre high by 1 metre wide made out of gabions (stone-filled steel mesh cages) wired together

Gabion Safety Barrier

Where & when have they been used?

- For some years in Nepal
- Over 3 years the Safety Unit installed gabion safety barriers at many accident sites on the busiest road out of the Kathmandu Valley
 - the barrier has been hit at least twenty times

Pros and cons of the gabion safety barrier

Group Discussion

- A. What are the potential advantages and of the gabion safety barrier?
- B. What are the potential disadvantages of the gabion safety barrier?

Advantages of the gabion safety barrier: Nepal

Easy to build if stone is available

Affordable

for the work to be done by local contractors

Repairs are simple

- but in practice repairs are delayed while the department waits for sufficient repair work to be of interest to contractors
- Solution Use of light coloured stones makes the barrier more visible at night
 - helps drivers recognise where the road goes

Disadvantages of the gabion safety barrier: Nepal

Take up too much space

- a 750cm wide gabion barrier is being tested
 Light vehicles hitting the barrier at high speed are more likely to result in severe consequences
 - but there have been few accidents involving light vehicles
 - none have resulted in serious injury

Performance of the Gabion Safety Barrier in Nepal

Searly all reported impacts involved a truck or bus

- sometimes the vehicle broke through part of the barrier, or rode onto the top of it
 - but it was always brought to a halt
- No serious injuries
 - except in a few accidents where the vehicle overturned before hitting the barrier
- The barrier pushes back & absorbs some of the impact
 - helps prevent serious injury

Modifications to the design of gabion safety barriers made by the Safety Unit

- Gabions were initially anchored into the ground with steel reinforcing rods
 - but people broke open the gabions to steal the rods
- Rods were omitted in later versions
 - performance has not been affected
- Small gaps now provided in the barrier at intervals of 18-24 metres
 - enable road workers to push loose rock and earth (from landslides) off the road

5. Guidelines for the use of the gabion safety barrier

Protect vehicles from falling down a slope

a drop of 3metres or more at/ near the edge of the road, and the slope is steeper than 1 in 4

Guidelines for the use of the gabion safety barrier

Protect vehicles hitting a roadside object

a building or the end of a bridge parapet close to the edge of the carriageway

Prevent crossover accidents on dual carriageways

But! Factors that determine whether safety barriers will be cost effective ...

- Mas there been run-off-road or crossover accidents at the site?
- Is the site on a sharp bend (where the design speed differs from the approach speed by more than 15kph)?
- Is it a busy road defined as a road with an AADT of more than 1000?
- Is the 85th percentile speed of traffic approaching the site is greater than 50kph?

If two or more of these factors apply, there is probably a good case for installing a safety barrier.

Conclusions

- The gabion safety barrier has potential for increasing road safety in Nepal
- Gabion safety barriers are coming into general use
 - expect this to reduce the severity of accidents
- Illustrates the value of having a Safety Unit in a Roads Department
 - can identify cost-effective solutions and promote their use
- The Safety Unit is now turning its attention to the issue of pedestrian safety in Nepal

Nepal case study: An affordable safety barrier

Case Study Activity

- A. What are the requirements for safety barriers in countries you are working in? How appropriate is the gabion safety barrier?
- B. How may the experiences of using the gabion safety barrier in Nepal be applied to the countries you are working in? What lessons can be learnt?

