Truck monitoring in Eastern and Southern Africa

Outline

- Background and objectives
- Methodology and Scope
- Choke points
- Routes
- Next steps

Background and objective: data as public goods

Rationale for corridor performance monitoring

- If you can't measure it, you can't improve it
- Standard approach: ad-hoc data collection campaigns to identify choke points and get the correct diagnosis
- Two problems with that:
- Only reactive, not a pro-active approach
- No sustainable data collection
- That is precisely the rationale for the development of corridor transport observatories

Focus on trucking challenges in Eastern and Southern Africa

- Large and untapped source of information: truck fleet management GPS data (proof of concept by TMSA)
- Web-based corridor performance monitoring system (CPMS): reports and indicators measuring border crossing time and route time for several corridors in Eastern and Southern Africa

First look at methodology: geo-fencing and timing

- Principles
- GPS units on board of trucks send positioning information every few seconds (or in batch when connectivity is an issue):
- GPS unit number (unique identifier for the tractor)
- Date and time (frequency varies, but on average, one blip every few seconds)
- GPS coordinates
- Speed
- Clock starts when the first positioning information falls within a defined geozone

- Clock stops when the position falls outside of the zone
- Layers of geozones (region, site, area and activity point) enables advanced analysis

Second look at methodology:

- In practices, there are a few additional tricks to transform data into information:
- Careful definition of the zones to match functions, and not only locations
- Slice the continuous movements of the trucks into trips:
- Information on routes identified as succession of nodes
- Direction counts (3 way borders \& borders on multi routes is a challenge)
- Get a sense of the border procedures (transit / import)
- Information from different providers is not consistent and therefore granular data extracted and built form ground up (billions of data points per month and tens of billions of calculations)

A few numbers: data sources

- Data Source
- Specific fleets
- Bulk depersonalized
- Truck fleet:
- MixTelematics
- Cartrack
- Globaltrack (in negotiations)
- Skygistics
- 8 more OBC providers potential
- Countries:
- Basically everywhere the truck fleet moves
- Most customers of the GPS service providers are in RSA

Number of countries	Vehicles
$\mathbf{1}$	77577
$\mathbf{2}$	4387
$\mathbf{3}$	1788
$\mathbf{4}$	1336
$\mathbf{5}$	73
$\mathbf{6}$	29
$\mathbf{7}$	2

A few numbers: geographic scope

- Catalogues of geo-fenced areas, so far, the zones cover:
- 11 sea ports
- 15 economic areas, usually the capital city (when not a port)
- 2 dry ports
- 3 lake ports
- 24 inland borders (with each side of the border, and for 5 of them, additional sub-zones)
- 186 areas of interest to date

Border	Observations
Beitbridge	7,002
Kasumbalesa	5,043
Chirundu	4,452
Martins/Groblersburg	4,391
Kazungula	1,450
Forbes/Machipanda	1,225
Gatuna/Katuna	888
Busia/Malaba	771
Oshoek/Ngwenya	763
Nakonde/Tunduma	740
Nyampanda/Cuchamano	657
Kopfontein	618
Lebombo/ R Garcia	514
Vic Falls/Livingstone	426
Trans Kalahari/Mamuno	275
Vioolsdrif/Noordoewer	126
Maseru/Ladybrand	92
Bwera/Kasindi	62
Songwe/Kasumulu	29
Bunagana	24
Mgabi/Kachebere	22

Choke points: borders (1)

- There is usually a wide variance of crossing times
- Several consequences:
- Median, top 5\% and bottom 5\% are far better descriptions than averages, min and max
- Consider different scenarios and crossing patterns in the analysis, for instance:
- What if truck arrives in the morning compared to afternoon?
- Transit versus clearance

Choke points: borders (2)

Arrival time at the border

Distribution of crossing time

Choke points: borders (3)

- All borders are split between the two countries, for instance:
- Chirundu Zambia
- Chirundu Zimbabwe
- A few borders (5 currently) have additional zoning, linked to functional areas within the border:
- Parking yard
- Customs controls

Routes

- A route is identified by a succession of nodes (the geofenced areas) and their links
- For instance, Durban to Zambia copperbelt route is defined by Durban Gauteng - Beitbridge - Harare - Chirundu - Lusaka - Zambia Copperbelt
- Indicators are calculated for the trucks passing in succession to all the nodes for a route
- Beitbridge will be a transit crossing
- Chirundu will be an import crossing
- Route time decomposed by segment: links, economic areas, and borders

Route time

- Distribution of route time is important: how reliable is the delivery time?
- Example Durban - DRC Copperbelt:
- Median time for northbound is 10 days
- Median for southbound is 8 days

Route idle time: Durban - DRC

- Idle measures the time the truck is not moving, either due to intermediate stops on the links (weighbridges, rest stops, etc.), or at borders, or while crossing major urban areas
- Average speed is measured only when the truck is moving
- On the total route, the trucks are moving less than a quarter of the total route time

Segment	Average Speed	Median time	Idle time
Durban-Gauteng	41.4	12.2	50%
Crossing Gauteng	13.9	21.3	89%
Gauteng-Beitbridge	28.6	19.0	52%
Beitbridge border	9.8	18.8	91%
Beitbridge-Harare	50.2	10.8	34%
Crossing Harare	12.7	22.7	84%
Harare-Chirundu	40.6	14.2	57%
Chirundu border	8.3	9.6	96%
Chirundu -Lusaka	39.4	2.9	54%
Crossing Lusaka	10.6	3.5	69%
Lusaka-Kasumbalesa	31.0	21.6	60%
Crossing Kasumbalesa	3.0	28.4	97%
Kasumbalesa-DRC Copperbelt	61.1	1.1	5%
Corridor		186.1	74%

Mapping \& GIS module

Truck giving up on Kazungula and going through Vic Falls instead

Truck en route to Copperbelt 'taking a break' in Gauteng

Immediate next steps

Data related

- Issue of truck nationality
- How far back historical data is relevant (cost versus interest)
- Diversification of the data sources:
- Targeting specific countries for improved coverage?
- Targeting specific industries?
- Trucking companies with large fleet volunteering to contribute GPS data?

Internet tool related

- From beta-version to online tool:
- Stabilize the dashboards: relevance of the indicators and reports?
- Critical review of all the geo-zones:
- Adding sublayers? For instance distinguish ports into terminal / port authority limits / metropolitan area
- Diversifying interests? For instance fixed weighbridges, major rest areas
- Limitation on the number of possible zones: prioritization

Mid-term next steps

Ensuring sustainability

- Hosting and updates are secured until February 2018
- Long term objective is to transfer the responsibility of the system to a regional institution or a consortium of regional institutions:
- Trucking industry associations / FESARTA
- SASTALC
- Academia

Using information for advocacy and change

- Information is only the first step
- Once problems areas are identified, what type of advocacy is necessary to solve the problems?

